Template Numerical Library version\ main:8b8c8226
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Static Public Member Functions | Protected Types | Protected Member Functions | Protected Attributes | List of all members
TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization > Class Template Reference

Implementation of dense matrix view. More...

#include <TNL/Matrices/DenseMatrixView.h>

Inheritance diagram for TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >:
Inheritance graph
[legend]
Collaboration diagram for TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >:
Collaboration graph
[legend]

Public Types

using ConstRowView = typename RowView::ConstRowView
 Type for accessing immutable matrix row.
 
using ConstValuesViewType = typename ValuesViewType::ConstViewType
 Matrix elements container view type. More...
 
using ConstViewType = DenseMatrixView< std::add_const_t< Real >, Device, Index, Organization >
 Matrix view type for constant instances. More...
 
using DeviceType = Device
 The device where the matrix is allocated.
 
using IndexType = Index
 The type used for matrix elements indexing.
 
using RealType = Real
 The type of matrix elements.
 
using RowView = DenseMatrixRowView< SegmentViewType, ValuesViewType >
 Type for accessing matrix row.
 
template<typename _Real = Real, typename _Device = Device, typename _Index = Index>
using Self = DenseMatrixView< _Real, _Device, _Index >
 Helper type for getting self type or its modifications.
 
using ValuesViewType = typename BaseType::ValuesView
 Matrix elements container view type. More...
 
using ViewType = DenseMatrixView< Real, Device, Index, Organization >
 Matrix view type. More...
 
- Public Types inherited from TNL::Matrices::MatrixView< Real, Device, Index >
using ConstRowsCapacitiesTypeView = typename RowsCapacitiesTypeView::ConstViewType
 
using ConstValuesView = typename ValuesView::ConstViewType
 Type of constant vector view holding values of matrix elements.
 
using ConstViewType = MatrixView< typename std::add_const_t< Real >, Device, Index >
 Type of base matrix view for constant instances. More...
 
using DeviceType = Device
 The device where the matrix is allocated.
 
using IndexType = Index
 The type used for matrix elements indexing.
 
using RealType = Real
 The type of matrix elements.
 
using RowsCapacitiesType = Containers::Vector< Index, Device, Index >
 
using RowsCapacitiesTypeView = Containers::VectorView< Index, Device, Index >
 
using ValuesView = Containers::VectorView< Real, Device, Index >
 Type of vector view holding values of matrix elements.
 
using ViewType = MatrixView< Real, Device, Index >
 Type of base matrix view. More...
 

Public Member Functions

__cuda_callable__ DenseMatrixView ()
 Constructor without parameters.
 
__cuda_callable__ DenseMatrixView (const DenseMatrixView &matrix)=default
 Copy constructor. More...
 
template<typename Real_ >
__cuda_callable__ DenseMatrixView (IndexType rows, IndexType columns, const Containers::VectorView< Real_, Device, Index > &values)
 Constructor with matrix dimensions and values. More...
 
template<typename Value_ >
__cuda_callable__ DenseMatrixView (IndexType rows, IndexType columns, const Containers::VectorView< Value_, Device, Index > &values)
 
__cuda_callable__ DenseMatrixView (IndexType rows, IndexType columns, const ValuesViewType &values)
 Constructor with matrix dimensions and values. More...
 
__cuda_callable__ void addElement (IndexType row, IndexType column, const RealType &value, const RealType &thisElementMultiplicator=1.0)
 Add element at given row and column to given value. More...
 
template<typename Matrix >
void addMatrix (const Matrix &matrix, const RealType &matrixMultiplicator=1.0, const RealType &thisMatrixMultiplicator=1.0)
 
template<typename Function >
void forAllElements (Function &&function)
 This method calls forElements for all matrix rows. More...
 
template<typename Function >
void forAllElements (Function &&function) const
 This method calls forElements for all matrix rows. More...
 
template<typename Function >
void forAllRows (Function &&function)
 Method for parallel iteration over all matrix rows. More...
 
template<typename Function >
void forAllRows (Function &&function) const
 Method for parallel iteration over all matrix rows for constant instances. More...
 
template<typename Function >
void forElements (IndexType begin, IndexType end, Function &&function)
 Method for iteration over all matrix rows for non-constant instances. More...
 
template<typename Function >
void forElements (IndexType begin, IndexType end, Function &&function) const
 Method for iteration over all matrix rows for constant instances. More...
 
template<typename Function >
void forRows (IndexType begin, IndexType end, Function &&function)
 Method for parallel iteration over matrix rows from interval [ begin, end). More...
 
template<typename Function >
void forRows (IndexType begin, IndexType end, Function &&function) const
 Method for parallel iteration over matrix rows from interval [ begin, end) for constant instances. More...
 
IndexType getAllocatedElementsCount () const
 Returns number of all matrix elements. More...
 
template<typename Vector >
void getCompressedRowLengths (Vector &rowLengths) const
 Computes number of non-zeros in each row. More...
 
__cuda_callable__ ConstViewType getConstView () const
 Returns a non-modifiable dense matrix view. More...
 
__cuda_callable__ Real getElement (IndexType row, IndexType column) const
 Returns value of matrix element at position given by its row and column index. More...
 
IndexType getNonzeroElementsCount () const override
 Returns number of non-zero matrix elements. More...
 
__cuda_callable__ RowView getRow (IndexType rowIdx)
 Non-constant getter of simple structure for accessing given matrix row. More...
 
__cuda_callable__ ConstRowView getRow (IndexType rowIdx) const
 Constant getter of simple structure for accessing given matrix row. More...
 
template<typename Vector >
void getRowCapacities (Vector &rowCapacities) const
 Compute capacities of all rows. More...
 
std::string getSerializationTypeVirtual () const override
 Returns string with serialization type. More...
 
__cuda_callable__ ViewType getView ()
 Returns a modifiable dense matrix view. More...
 
template<typename Real_ , typename Device_ , typename Index_ >
bool operator!= (const DenseMatrixView< Real_, Device_, Index_, Organization > &matrix) const
 Comparison operator with another dense matrix view. More...
 
template<typename Matrix >
bool operator!= (const Matrix &matrix) const
 Comparison operator with another arbitrary matrix type. More...
 
__cuda_callable__ Realoperator() (IndexType row, IndexType column)
 Returns non-constant reference to element at row row and column column. More...
 
__cuda_callable__ const Realoperator() (IndexType row, IndexType column) const
 Returns constant reference to element at row row and column column. More...
 
DenseMatrixViewoperator= (const DenseMatrixView &matrix)
 Assignment operator with DenseMatrix. More...
 
template<typename Real_ , typename Device_ , typename Index_ >
bool operator== (const DenseMatrixView< Real_, Device_, Index_, Organization > &matrix) const
 Comparison operator with another dense matrix view. More...
 
template<typename Matrix >
bool operator== (const Matrix &matrix) const
 Comparison operator with another arbitrary matrix type. More...
 
void print (std::ostream &str) const override
 Method for printing the matrix to output stream. More...
 
template<typename Fetch , typename Reduce , typename Keep , typename FetchReal >
void reduceAllRows (Fetch &fetch, const Reduce &reduce, Keep &keep, const FetchReal &identity)
 Method for performing general reduction on ALL matrix rows. More...
 
template<typename Fetch , typename Reduce , typename Keep , typename FetchReal >
void reduceAllRows (Fetch &fetch, const Reduce &reduce, Keep &keep, const FetchReal &identity) const
 Method for performing general reduction on ALL matrix rows for constant instances. More...
 
template<typename Fetch , typename Reduce , typename Keep , typename FetchReal >
void reduceRows (IndexType begin, IndexType end, Fetch &fetch, const Reduce &reduce, Keep &keep, const FetchReal &identity)
 Method for performing general reduction on matrix rows. More...
 
template<typename Fetch , typename Reduce , typename Keep , typename FetchReal >
void reduceRows (IndexType begin, IndexType end, Fetch &fetch, const Reduce &reduce, Keep &keep, const FetchReal &identity) const
 Method for performing general reduction on matrix rows for constant instances. More...
 
template<typename Fetch , typename Reduce , typename Keep , typename FetchValue >
void reduceRows (IndexType begin, IndexType end, Fetch &fetch, const Reduce &reduce, Keep &keep, const FetchValue &identity)
 
template<typename Fetch , typename Reduce , typename Keep , typename FetchValue >
void reduceRows (IndexType begin, IndexType end, Fetch &fetch, const Reduce &reduce, Keep &keep, const FetchValue &identity) const
 
void save (const String &fileName) const
 Method for saving the matrix view to the file with given filename. More...
 
void save (File &file) const override
 Method for saving the matrix view to a file. More...
 
template<typename Function >
void sequentialForAllRows (Function &&function)
 This method calls sequentialForRows for all matrix rows. More...
 
template<typename Function >
void sequentialForAllRows (Function &&function) const
 This method calls sequentialForRows for all matrix rows (for constant instances). More...
 
template<typename Function >
void sequentialForRows (IndexType begin, IndexType end, Function &&function)
 Method for sequential iteration over all matrix rows for non-constant instances. More...
 
template<typename Function >
void sequentialForRows (IndexType begin, IndexType end, Function &&function) const
 Method for sequential iteration over all matrix rows for constant instances. More...
 
__cuda_callable__ void setElement (IndexType row, IndexType column, const RealType &value)
 Sets element at given row and column to given value. More...
 
void setValue (const RealType &v)
 Sets all matrix elements to value v. More...
 
template<typename InVector , typename OutVector >
void vectorProduct (const InVector &inVector, OutVector &outVector, const RealType &matrixMultiplicator=1.0, const RealType &outVectorMultiplicator=0.0, IndexType begin=0, IndexType end=0) const
 Computes product of matrix and vector. More...
 
- Public Member Functions inherited from TNL::Matrices::MatrixView< Real, Device, Index >
__cuda_callable__ MatrixView ()
 Basic constructor with no parameters.
 
__cuda_callable__ MatrixView (const MatrixView &view)=default
 Shallow copy constructor. More...
 
__cuda_callable__ MatrixView (IndexType rows, IndexType columns, ValuesView values)
 Constructor with matrix dimensions and matrix elements values. More...
 
__cuda_callable__ MatrixView (MatrixView &&view) noexcept=default
 Move constructor. More...
 
IndexType getAllocatedElementsCount () const
 Tells the number of allocated matrix elements. More...
 
__cuda_callable__ IndexType getColumns () const
 Returns number of matrix columns. More...
 
virtual IndexType getNonzeroElementsCount () const
 Computes a current number of nonzero matrix elements. More...
 
__cuda_callable__ IndexType getRows () const
 Returns number of matrix rows. More...
 
virtual std::string getSerializationTypeVirtual () const =0
 
__cuda_callable__ ValuesViewgetValues ()
 Returns a reference to a vector with the matrix elements values. More...
 
__cuda_callable__ const ValuesViewgetValues () const
 Returns a constant reference to a vector with the matrix elements values. More...
 
template<typename Matrix >
bool operator!= (const Matrix &matrix) const
 Comparison operator with another arbitrary matrix view type. More...
 
template<typename MatrixT >
bool operator!= (const MatrixT &matrix) const
 
__cuda_callable__ MatrixViewoperator= (const MatrixView &view)
 Shallow copy of the matrix view. More...
 
template<typename Matrix >
bool operator== (const Matrix &matrix) const
 Comparison operator with another arbitrary matrix view type. More...
 
template<typename MatrixT >
bool operator== (const MatrixT &matrix) const
 
virtual void print (std::ostream &str) const
 Method for printing the matrix view to output stream. More...
 
void save (const String &fileName) const
 Method for saving the matrix view to a file. More...
 
virtual void save (File &file) const
 Method for saving the matrix view to a file. More...
 

Static Public Member Functions

static constexpr ElementsOrganization getOrganization ()
 Matrix elements organization getter. More...
 
static std::string getSerializationType ()
 Returns string with serialization type. More...
 

Protected Types

using BaseType = MatrixView< Real, Device, Index >
 
using SegmentsType = Algorithms::Segments::Ellpack< Device, Index, typename Allocators::Default< Device >::template Allocator< Index >, Organization, 1 >
 
using SegmentsViewType = typename SegmentsType::ViewType
 
using SegmentViewType = typename SegmentsType::SegmentViewType
 

Protected Member Functions

__cuda_callable__ IndexType getElementIndex (IndexType row, IndexType column) const
 

Protected Attributes

SegmentsViewType segments
 
- Protected Attributes inherited from TNL::Matrices::MatrixView< Real, Device, Index >
IndexType columns
 
IndexType rows
 
ValuesView values
 

Detailed Description

template<typename Real = double, typename Device = Devices::Host, typename Index = int, ElementsOrganization Organization = Algorithms::Segments::DefaultElementsOrganization< Device >::getOrganization()>
class TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >

Implementation of dense matrix view.

It serves as an accessor to DenseMatrix for example when passing the matrix to lambda functions. DenseMatrix view can be also created in CUDA kernels.

Template Parameters
Realis a type of matrix elements.
Deviceis a device where the matrix is allocated.
Indexis a type for indexing of the matrix elements.
MatrixElementsOrganizationtells the ordering of matrix elements in memory. It is either TNL::Algorithms::Segments::RowMajorOrder or TNL::Algorithms::Segments::ColumnMajorOrder.

See DenseMatrix.

Member Typedef Documentation

◆ ConstValuesViewType

template<typename Real = double, typename Device = Devices::Host, typename Index = int, ElementsOrganization Organization = Algorithms::Segments::DefaultElementsOrganization< Device >::getOrganization()>
using TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::ConstValuesViewType = typename ValuesViewType::ConstViewType

Matrix elements container view type.

Use this for embedding of the matrix elements values.

◆ ConstViewType

template<typename Real = double, typename Device = Devices::Host, typename Index = int, ElementsOrganization Organization = Algorithms::Segments::DefaultElementsOrganization< Device >::getOrganization()>
using TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::ConstViewType = DenseMatrixView< std::add_const_t< Real >, Device, Index, Organization >

Matrix view type for constant instances.

See DenseMatrixView.

◆ ValuesViewType

template<typename Real = double, typename Device = Devices::Host, typename Index = int, ElementsOrganization Organization = Algorithms::Segments::DefaultElementsOrganization< Device >::getOrganization()>
using TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::ValuesViewType = typename BaseType::ValuesView

Matrix elements container view type.

Use this for embedding of the matrix elements values.

◆ ViewType

template<typename Real = double, typename Device = Devices::Host, typename Index = int, ElementsOrganization Organization = Algorithms::Segments::DefaultElementsOrganization< Device >::getOrganization()>
using TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::ViewType = DenseMatrixView< Real, Device, Index, Organization >

Matrix view type.

See DenseMatrixView.

Constructor & Destructor Documentation

◆ DenseMatrixView() [1/3]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
__cuda_callable__ TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::DenseMatrixView ( IndexType  rows,
IndexType  columns,
const ValuesViewType values 
)

Constructor with matrix dimensions and values.

Organization of matrix elements values in

Parameters
rowsnumber of matrix rows.
columnsnumber of matrix columns.
valuesis vector view with matrix elements values.
Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void createMatrixView()
{
1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12 };
/***
* Create dense matrix view with row major order
*/
std::cout << "Row major order matrix:" << std::endl;
std::cout << rowMajorMatrix << std::endl;
/***
* Create dense matrix view with column major order
*/
std::cout << "Column major order matrix:" << std::endl;
std::cout << columnMajorMatrix << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Creating matrix view on host: " << std::endl;
createMatrixView< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Creating matrix view on CUDA device: " << std::endl;
createMatrixView< TNL::Devices::Cuda >();
#endif
}
__cuda_callable__ ViewType getView(IndexType begin=0, IndexType end=0)
Returns a modifiable view of the vector view.
Definition: VectorView.hpp:18
Vector extends Array with algebraic operations.
Definition: Vector.h:40
Implementation of dense matrix view.
Definition: DenseMatrixView.h:39
T endl(T... args)
Output
Creating matrix view on host:
Row major order matrix:
Row: 0 -> 0:1 1:2 2:3 3:4
Row: 1 -> 0:5 1:6 2:7 3:8
Row: 2 -> 0:9 1:10 2:11 3:12
Column major order matrix:
Row: 0 -> 0:1 1:2 2:3
Row: 1 -> 0:4 1:5 2:6
Row: 2 -> 0:7 1:8 2:9
Row: 3 -> 0:10 1:11 2:12
Creating matrix view on CUDA device:
Row major order matrix:
Row: 0 -> 0:1 1:2 2:3 3:4
Row: 1 -> 0:5 1:6 2:7 3:8
Row: 2 -> 0:9 1:10 2:11 3:12
Column major order matrix:
Row: 0 -> 0:1 1:2 2:3
Row: 1 -> 0:4 1:5 2:6
Row: 2 -> 0:7 1:8 2:9
Row: 3 -> 0:10 1:11 2:12

◆ DenseMatrixView() [2/3]

template<typename Real = double, typename Device = Devices::Host, typename Index = int, ElementsOrganization Organization = Algorithms::Segments::DefaultElementsOrganization< Device >::getOrganization()>
template<typename Real_ >
__cuda_callable__ TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::DenseMatrixView ( IndexType  rows,
IndexType  columns,
const Containers::VectorView< Real_, Device, Index > &  values 
)

Constructor with matrix dimensions and values.

Organization of matrix elements values in

Parameters
rowsnumber of matrix rows.
columnsnumber of matrix columns.
valuesis vector view with matrix elements values.
Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void createMatrixView()
{
1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12 };
/***
* Create dense matrix view with row major order
*/
std::cout << "Row major order matrix:" << std::endl;
std::cout << rowMajorMatrix << std::endl;
/***
* Create dense matrix view with column major order
*/
std::cout << "Column major order matrix:" << std::endl;
std::cout << columnMajorMatrix << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Creating matrix view on host: " << std::endl;
createMatrixView< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Creating matrix view on CUDA device: " << std::endl;
createMatrixView< TNL::Devices::Cuda >();
#endif
}
Output
Creating matrix view on host:
Row major order matrix:
Row: 0 -> 0:1 1:2 2:3 3:4
Row: 1 -> 0:5 1:6 2:7 3:8
Row: 2 -> 0:9 1:10 2:11 3:12
Column major order matrix:
Row: 0 -> 0:1 1:2 2:3
Row: 1 -> 0:4 1:5 2:6
Row: 2 -> 0:7 1:8 2:9
Row: 3 -> 0:10 1:11 2:12
Creating matrix view on CUDA device:
Row major order matrix:
Row: 0 -> 0:1 1:2 2:3 3:4
Row: 1 -> 0:5 1:6 2:7 3:8
Row: 2 -> 0:9 1:10 2:11 3:12
Column major order matrix:
Row: 0 -> 0:1 1:2 2:3
Row: 1 -> 0:4 1:5 2:6
Row: 2 -> 0:7 1:8 2:9
Row: 3 -> 0:10 1:11 2:12

◆ DenseMatrixView() [3/3]

template<typename Real = double, typename Device = Devices::Host, typename Index = int, ElementsOrganization Organization = Algorithms::Segments::DefaultElementsOrganization< Device >::getOrganization()>
__cuda_callable__ TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::DenseMatrixView ( const DenseMatrixView< Real, Device, Index, Organization > &  matrix)
default

Copy constructor.

Parameters
matrixis the source matrix view.

Member Function Documentation

◆ addElement()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
__cuda_callable__ void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::addElement ( IndexType  row,
IndexType  column,
const RealType value,
const RealType thisElementMultiplicator = 1.0 
)

Add element at given row and column to given value.

This method can be called from the host system (CPU) no matter where the matrix is allocated. If the matrix is allocated on GPU this method can be called even from device kernels. If the matrix is allocated in GPU device this method is called from CPU, it transfers values of each matrix element separately and so the performance is very low. For higher performance see. DenseMatrix::getRow or DenseMatrix::forElements and DenseMatrix::forAllElements.

Parameters
rowis row index of the element.
columnis columns index of the element.
valueis the value the element will be set to.
thisElementMultiplicatoris multiplicator the original matrix element value is multiplied by before addition of given value.
Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
template< typename Device >
void addElements()
{
auto matrixView = matrix.getView();
for( int i = 0; i < 5; i++ )
matrixView.setElement( i, i, i );
std::cout << "Initial matrix is: " << std::endl << matrix << std::endl;
for( int i = 0; i < 5; i++ )
for( int j = 0; j < 5; j++ )
matrixView.addElement( i, j, 1.0, 5.0 );
std::cout << "Matrix after addition is: " << std::endl << matrix << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Add elements on host:" << std::endl;
addElements< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Add elements on CUDA device:" << std::endl;
addElements< TNL::Devices::Cuda >();
#endif
}
Implementation of dense matrix, i.e. matrix storing explicitly all of its elements including zeros.
Definition: DenseMatrix.h:35
Output
Add elements on host:
Initial matrix is:
Row: 0 -> 0:0 1:0 2:0 3:0 4:0
Row: 1 -> 0:0 1:1 2:0 3:0 4:0
Row: 2 -> 0:0 1:0 2:2 3:0 4:0
Row: 3 -> 0:0 1:0 2:0 3:3 4:0
Row: 4 -> 0:0 1:0 2:0 3:0 4:4
Matrix after addition is:
Row: 0 -> 0:1 1:1 2:1 3:1 4:1
Row: 1 -> 0:1 1:6 2:1 3:1 4:1
Row: 2 -> 0:1 1:1 2:11 3:1 4:1
Row: 3 -> 0:1 1:1 2:1 3:16 4:1
Row: 4 -> 0:1 1:1 2:1 3:1 4:21
Add elements on CUDA device:
Initial matrix is:
Row: 0 -> 0:0 1:0 2:0 3:0 4:0
Row: 1 -> 0:0 1:1 2:0 3:0 4:0
Row: 2 -> 0:0 1:0 2:2 3:0 4:0
Row: 3 -> 0:0 1:0 2:0 3:3 4:0
Row: 4 -> 0:0 1:0 2:0 3:0 4:4
Matrix after addition is:
Row: 0 -> 0:1 1:1 2:1 3:1 4:1
Row: 1 -> 0:1 1:6 2:1 3:1 4:1
Row: 2 -> 0:1 1:1 2:11 3:1 4:1
Row: 3 -> 0:1 1:1 2:1 3:16 4:1
Row: 4 -> 0:1 1:1 2:1 3:1 4:21

◆ forAllElements() [1/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Function >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::forAllElements ( Function &&  function)

This method calls forElements for all matrix rows.

See DenseMatrix::forAllElements.

Template Parameters
Functionis a type of lambda function that will operate on matrix elements.
Parameters
functionis an instance of the lambda function to be called in each row.
Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void forAllElementsExample()
{
auto f = [=] __cuda_callable__ ( int rowIdx, int columnIdx, int columnIdx_, double& value ) {
if( rowIdx >= columnIdx )
value = rowIdx + columnIdx;
};
matrix.forAllElements( f );
std::cout << matrix << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Creating matrix on host: " << std::endl;
forAllElementsExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Creating matrix on CUDA device: " << std::endl;
forAllElementsExample< TNL::Devices::Cuda >();
#endif
}
#define __cuda_callable__
Definition: CudaCallable.h:22
Output
Creating matrix on host:
Row: 0 -> 0:0 1:0 2:0 3:0 4:0
Row: 1 -> 0:1 1:2 2:0 3:0 4:0
Row: 2 -> 0:2 1:3 2:4 3:0 4:0
Row: 3 -> 0:3 1:4 2:5 3:6 4:0
Row: 4 -> 0:4 1:5 2:6 3:7 4:8
Creating matrix on CUDA device:
Row: 0 -> 0:0 1:0 2:0 3:0 4:0
Row: 1 -> 0:1 1:2 2:0 3:0 4:0
Row: 2 -> 0:2 1:3 2:4 3:0 4:0
Row: 3 -> 0:3 1:4 2:5 3:6 4:0
Row: 4 -> 0:4 1:5 2:6 3:7 4:8

◆ forAllElements() [2/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Function >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::forAllElements ( Function &&  function) const

This method calls forElements for all matrix rows.

See DenseMatrix::forElements.

Template Parameters
Functionis a type of lambda function that will operate on matrix elements.
Parameters
functionis an instance of the lambda function to be called in each row.
Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void forAllElementsExample()
{
auto matrixView = matrix.getView();
auto f = [=] __cuda_callable__ ( int rowIdx, int columnIdx, int globalIdx, double& value ) {
if( rowIdx >= columnIdx )
value = rowIdx + columnIdx;
};
matrixView.forAllElements( f );
std::cout << matrix << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Creating matrix on host: " << std::endl;
forAllElementsExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Creating matrix on CUDA device: " << std::endl;
forAllElementsExample< TNL::Devices::Cuda >();
#endif
}
Output
Creating matrix on host:
Row: 0 -> 0:0 1:0 2:0 3:0 4:0
Row: 1 -> 0:1 1:2 2:0 3:0 4:0
Row: 2 -> 0:2 1:3 2:4 3:0 4:0
Row: 3 -> 0:3 1:4 2:5 3:6 4:0
Row: 4 -> 0:4 1:5 2:6 3:7 4:8
Creating matrix on CUDA device:
Row: 0 -> 0:0 1:0 2:0 3:0 4:0
Row: 1 -> 0:1 1:2 2:0 3:0 4:0
Row: 2 -> 0:2 1:3 2:4 3:0 4:0
Row: 3 -> 0:3 1:4 2:5 3:6 4:0
Row: 4 -> 0:4 1:5 2:6 3:7 4:8

◆ forAllRows() [1/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Function >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::forAllRows ( Function &&  function)

Method for parallel iteration over all matrix rows.

In each row, given lambda function is performed. Each row is processed by at most one thread unlike the method DenseMatrixView::forAllElements where more than one thread can be mapped to each row.

Template Parameters
Functionis type of the lambda function.
Parameters
functionis an instance of the lambda function to be called for each row.
auto function = [] __cuda_callable__ ( RowView& row ) mutable { ... };
RowView is a simple structure for accessing rows of dense matrix.
Definition: DenseMatrixRowView.h:36

RowView represents matrix row - see TNL::Matrices::DenseMatrixView::RowView.

Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void forRowsExample()
{
using RowView = typename MatrixType::RowView;
const int size = 5;
MatrixType matrix( size, size );
auto view = matrix.getView();
/***
* Set the matrix elements.
*/
auto f = [=] __cuda_callable__ ( RowView& row ) mutable {
const int& rowIdx = row.getRowIndex();
if( rowIdx > 0 )
row.setValue( rowIdx - 1, -1.0 );
row.setValue( rowIdx, rowIdx + 1.0 );
if( rowIdx < size - 1 )
row.setValue( rowIdx + 1, -1.0 );
};
view.forAllRows( f );
std::cout << matrix << std::endl;
/***
* Now divide each matrix row by its largest element - with the use of iterators.
*/
view.forAllRows( [=] __cuda_callable__ ( RowView& row ) mutable {
for( auto element : row )
largest = TNL::max( largest, element.value() );
for( auto element : row )
element.value() /= largest;
} );
std::cout << "Divide each matrix row by its largest element... " << std::endl;
std::cout << matrix << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Getting matrix rows on host: " << std::endl;
forRowsExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Getting matrix rows on CUDA device: " << std::endl;
forRowsExample< TNL::Devices::Cuda >();
#endif
}
DenseMatrixRowView< SegmentViewType, ValuesViewType > RowView
Type for accessing matrix row.
Definition: DenseMatrixView.h:105
T lowest(T... args)
constexpr ResultType max(const T1 &a, const T2 &b)
This function returns maximum of two numbers.
Definition: Math.h:65
Structure for specifying type of sparse matrix.
Definition: MatrixType.h:21
Output
Getting matrix rows on host:
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-1 1:2 2:-1 3:0 4:0
Row: 2 -> 0:0 1:-1 2:3 3:-1 4:0
Row: 3 -> 0:0 1:0 2:-1 3:4 4:-1
Row: 4 -> 0:0 1:0 2:0 3:-1 4:5
Divide each matrix row by its largest element...
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-0.5 1:1 2:-0.5 3:0 4:0
Row: 2 -> 0:0 1:-0.333333 2:1 3:-0.333333 4:0
Row: 3 -> 0:0 1:0 2:-0.25 3:1 4:-0.25
Row: 4 -> 0:0 1:0 2:0 3:-0.2 4:1
Getting matrix rows on CUDA device:
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-1 1:2 2:-1 3:0 4:0
Row: 2 -> 0:0 1:-1 2:3 3:-1 4:0
Row: 3 -> 0:0 1:0 2:-1 3:4 4:-1
Row: 4 -> 0:0 1:0 2:0 3:-1 4:5
Divide each matrix row by its largest element...
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-0.5 1:1 2:-0.5 3:0 4:0
Row: 2 -> 0:0 1:-0.333333 2:1 3:-0.333333 4:0
Row: 3 -> 0:0 1:0 2:-0.25 3:1 4:-0.25
Row: 4 -> 0:0 1:0 2:0 3:-0.2 4:1

◆ forAllRows() [2/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Function >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::forAllRows ( Function &&  function) const

Method for parallel iteration over all matrix rows for constant instances.

In each row, given lambda function is performed. Each row is processed by at most one thread unlike the method DenseMatrixView::forAllElements where more than one thread can be mapped to each row.

Template Parameters
Functionis type of the lambda function.
Parameters
functionis an instance of the lambda function to be called for each row.
auto function = [] __cuda_callable__ ( RowView& row ) { ... };

RowView represents matrix row - see TNL::Matrices::DenseMatrixView::RowView.

Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void forRowsExample()
{
using RowView = typename MatrixType::RowView;
const int size = 5;
MatrixType matrix( size, size );
auto view = matrix.getView();
/***
* Set the matrix elements.
*/
auto f = [=] __cuda_callable__ ( RowView& row ) mutable {
const int& rowIdx = row.getRowIndex();
if( rowIdx > 0 )
row.setValue( rowIdx - 1, -1.0 );
row.setValue( rowIdx, rowIdx + 1.0 );
if( rowIdx < size - 1 )
row.setValue( rowIdx + 1, -1.0 );
};
view.forAllRows( f );
std::cout << matrix << std::endl;
/***
* Now divide each matrix row by its largest element - with the use of iterators.
*/
view.forAllRows( [=] __cuda_callable__ ( RowView& row ) mutable {
for( auto element : row )
largest = TNL::max( largest, element.value() );
for( auto element : row )
element.value() /= largest;
} );
std::cout << "Divide each matrix row by its largest element... " << std::endl;
std::cout << matrix << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Getting matrix rows on host: " << std::endl;
forRowsExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Getting matrix rows on CUDA device: " << std::endl;
forRowsExample< TNL::Devices::Cuda >();
#endif
}
Output
Getting matrix rows on host:
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-1 1:2 2:-1 3:0 4:0
Row: 2 -> 0:0 1:-1 2:3 3:-1 4:0
Row: 3 -> 0:0 1:0 2:-1 3:4 4:-1
Row: 4 -> 0:0 1:0 2:0 3:-1 4:5
Divide each matrix row by its largest element...
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-0.5 1:1 2:-0.5 3:0 4:0
Row: 2 -> 0:0 1:-0.333333 2:1 3:-0.333333 4:0
Row: 3 -> 0:0 1:0 2:-0.25 3:1 4:-0.25
Row: 4 -> 0:0 1:0 2:0 3:-0.2 4:1
Getting matrix rows on CUDA device:
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-1 1:2 2:-1 3:0 4:0
Row: 2 -> 0:0 1:-1 2:3 3:-1 4:0
Row: 3 -> 0:0 1:0 2:-1 3:4 4:-1
Row: 4 -> 0:0 1:0 2:0 3:-1 4:5
Divide each matrix row by its largest element...
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-0.5 1:1 2:-0.5 3:0 4:0
Row: 2 -> 0:0 1:-0.333333 2:1 3:-0.333333 4:0
Row: 3 -> 0:0 1:0 2:-0.25 3:1 4:-0.25
Row: 4 -> 0:0 1:0 2:0 3:-0.2 4:1

◆ forElements() [1/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Function >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::forElements ( IndexType  begin,
IndexType  end,
Function &&  function 
)

Method for iteration over all matrix rows for non-constant instances.

Template Parameters
Functionis type of lambda function that will operate on matrix elements. It is should have form like
auto function = [=] __cuda_callable__ ( IndexType rowIdx, IndexType columnIdx, IndexType columnIdx, RealType& value ) {
... };
Index IndexType
The type used for matrix elements indexing.
Definition: DenseMatrixView.h:61
Definition: Real.h:17

The column index repeats twice only for compatibility with sparse matrices.

Parameters
begindefines beginning of the range [begin,end) of rows to be processed.
enddefines ending of the range [begin,end) of rows to be processed.
functionis an instance of the lambda function to be called in each row.
Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void forRowsExample()
{
using RowView = typename MatrixType::RowView;
const int size = 5;
MatrixType matrix( size, size );
auto view = matrix.getView();
/***
* Set the matrix elements.
*/
auto f = [=] __cuda_callable__ ( RowView& row ) mutable {
const int& rowIdx = row.getRowIndex();
if( rowIdx > 0 )
row.setValue( rowIdx - 1, -1.0 );
row.setValue( rowIdx, rowIdx + 1.0 );
if( rowIdx < size - 1 )
row.setValue( rowIdx + 1, -1.0 );
};
view.forAllRows( f );
std::cout << matrix << std::endl;
/***
* Now divide each matrix row by its largest element - with the use of iterators.
*/
view.forAllRows( [=] __cuda_callable__ ( RowView& row ) mutable {
for( auto element : row )
largest = TNL::max( largest, element.value() );
for( auto element : row )
element.value() /= largest;
} );
std::cout << "Divide each matrix row by its largest element... " << std::endl;
std::cout << matrix << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Getting matrix rows on host: " << std::endl;
forRowsExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Getting matrix rows on CUDA device: " << std::endl;
forRowsExample< TNL::Devices::Cuda >();
#endif
}
Output
Getting matrix rows on host:
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-1 1:2 2:-1 3:0 4:0
Row: 2 -> 0:0 1:-1 2:3 3:-1 4:0
Row: 3 -> 0:0 1:0 2:-1 3:4 4:-1
Row: 4 -> 0:0 1:0 2:0 3:-1 4:5
Divide each matrix row by its largest element...
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-0.5 1:1 2:-0.5 3:0 4:0
Row: 2 -> 0:0 1:-0.333333 2:1 3:-0.333333 4:0
Row: 3 -> 0:0 1:0 2:-0.25 3:1 4:-0.25
Row: 4 -> 0:0 1:0 2:0 3:-0.2 4:1
Getting matrix rows on CUDA device:
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-1 1:2 2:-1 3:0 4:0
Row: 2 -> 0:0 1:-1 2:3 3:-1 4:0
Row: 3 -> 0:0 1:0 2:-1 3:4 4:-1
Row: 4 -> 0:0 1:0 2:0 3:-1 4:5
Divide each matrix row by its largest element...
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-0.5 1:1 2:-0.5 3:0 4:0
Row: 2 -> 0:0 1:-0.333333 2:1 3:-0.333333 4:0
Row: 3 -> 0:0 1:0 2:-0.25 3:1 4:-0.25
Row: 4 -> 0:0 1:0 2:0 3:-0.2 4:1

◆ forElements() [2/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Function >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::forElements ( IndexType  begin,
IndexType  end,
Function &&  function 
) const

Method for iteration over all matrix rows for constant instances.

Template Parameters
Functionis type of lambda function that will operate on matrix elements. It is should have form like
auto function = [=] __cuda_callable__ ( IndexType rowIdx, IndexType columnIdx, IndexType columnIdx, const RealType& value
) { ... };

The column index repeats twice only for compatibility with sparse matrices.

Parameters
begindefines beginning of the range [begin,end) of rows to be processed.
enddefines ending of the range [begin,end) of rows to be processed.
functionis an instance of the lambda function to be called in each row.
Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void forRowsExample()
{
using RowView = typename MatrixType::RowView;
const int size = 5;
MatrixType matrix( size, size );
auto view = matrix.getView();
/***
* Set the matrix elements.
*/
auto f = [=] __cuda_callable__ ( RowView& row ) mutable {
const int& rowIdx = row.getRowIndex();
if( rowIdx > 0 )
row.setValue( rowIdx - 1, -1.0 );
row.setValue( rowIdx, rowIdx + 1.0 );
if( rowIdx < size - 1 )
row.setValue( rowIdx + 1, -1.0 );
};
view.forAllRows( f );
std::cout << matrix << std::endl;
/***
* Now divide each matrix row by its largest element - with the use of iterators.
*/
view.forAllRows( [=] __cuda_callable__ ( RowView& row ) mutable {
for( auto element : row )
largest = TNL::max( largest, element.value() );
for( auto element : row )
element.value() /= largest;
} );
std::cout << "Divide each matrix row by its largest element... " << std::endl;
std::cout << matrix << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Getting matrix rows on host: " << std::endl;
forRowsExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Getting matrix rows on CUDA device: " << std::endl;
forRowsExample< TNL::Devices::Cuda >();
#endif
}
Output
Getting matrix rows on host:
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-1 1:2 2:-1 3:0 4:0
Row: 2 -> 0:0 1:-1 2:3 3:-1 4:0
Row: 3 -> 0:0 1:0 2:-1 3:4 4:-1
Row: 4 -> 0:0 1:0 2:0 3:-1 4:5
Divide each matrix row by its largest element...
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-0.5 1:1 2:-0.5 3:0 4:0
Row: 2 -> 0:0 1:-0.333333 2:1 3:-0.333333 4:0
Row: 3 -> 0:0 1:0 2:-0.25 3:1 4:-0.25
Row: 4 -> 0:0 1:0 2:0 3:-0.2 4:1
Getting matrix rows on CUDA device:
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-1 1:2 2:-1 3:0 4:0
Row: 2 -> 0:0 1:-1 2:3 3:-1 4:0
Row: 3 -> 0:0 1:0 2:-1 3:4 4:-1
Row: 4 -> 0:0 1:0 2:0 3:-1 4:5
Divide each matrix row by its largest element...
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-0.5 1:1 2:-0.5 3:0 4:0
Row: 2 -> 0:0 1:-0.333333 2:1 3:-0.333333 4:0
Row: 3 -> 0:0 1:0 2:-0.25 3:1 4:-0.25
Row: 4 -> 0:0 1:0 2:0 3:-0.2 4:1

◆ forRows() [1/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Function >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::forRows ( IndexType  begin,
IndexType  end,
Function &&  function 
)

Method for parallel iteration over matrix rows from interval [ begin, end).

In each row, given lambda function is performed. Each row is processed by at most one thread unlike the method DenseMatrix::forElements where more than one thread can be mapped to each row.

Template Parameters
Functionis type of the lambda function.
Parameters
begindefines beginning of the range [ begin,end ) of rows to be processed.
enddefines ending of the range [ begin, end ) of rows to be processed.
functionis an instance of the lambda function to be called for each row.
auto function = [] __cuda_callable__ ( RowView& row ) mutable { ... };

RowView represents matrix row - see TNL::Matrices::DenseMatrix::RowView.

Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void forRowsExample()
{
using RowView = typename MatrixType::RowView;
const int size = 5;
MatrixType matrix( size, size );
/***
* Set the matrix elements.
*/
auto f = [=] __cuda_callable__ ( RowView& row ) mutable {
const int& rowIdx = row.getRowIndex();
if( rowIdx > 0 )
row.setValue( rowIdx - 1, -1.0 );
row.setValue( rowIdx, rowIdx + 1.0 );
if( rowIdx < size - 1 )
row.setValue( rowIdx + 1, -1.0 );
};
matrix.forAllRows( f );
std::cout << matrix << std::endl;
/***
* Now divide each matrix row by its largest element with use of iterators.
*/
matrix.forAllRows( [=] __cuda_callable__ ( RowView& row ) mutable {
for( auto element : row )
largest = TNL::max( largest, element.value() );
for( auto element : row )
element.value() /= largest;
} );
std::cout << "Divide each matrix row by its largest element... " << std::endl;
std::cout << matrix << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Getting matrix rows on host: " << std::endl;
forRowsExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Getting matrix rows on CUDA device: " << std::endl;
forRowsExample< TNL::Devices::Cuda >();
#endif
}
Output
Getting matrix rows on host:
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-1 1:2 2:-1 3:0 4:0
Row: 2 -> 0:0 1:-1 2:3 3:-1 4:0
Row: 3 -> 0:0 1:0 2:-1 3:4 4:-1
Row: 4 -> 0:0 1:0 2:0 3:-1 4:5
Divide each matrix row by its largest element...
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-0.5 1:1 2:-0.5 3:0 4:0
Row: 2 -> 0:0 1:-0.333333 2:1 3:-0.333333 4:0
Row: 3 -> 0:0 1:0 2:-0.25 3:1 4:-0.25
Row: 4 -> 0:0 1:0 2:0 3:-0.2 4:1
Getting matrix rows on CUDA device:
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-1 1:2 2:-1 3:0 4:0
Row: 2 -> 0:0 1:-1 2:3 3:-1 4:0
Row: 3 -> 0:0 1:0 2:-1 3:4 4:-1
Row: 4 -> 0:0 1:0 2:0 3:-1 4:5
Divide each matrix row by its largest element...
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-0.5 1:1 2:-0.5 3:0 4:0
Row: 2 -> 0:0 1:-0.333333 2:1 3:-0.333333 4:0
Row: 3 -> 0:0 1:0 2:-0.25 3:1 4:-0.25
Row: 4 -> 0:0 1:0 2:0 3:-0.2 4:1

◆ forRows() [2/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Function >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::forRows ( IndexType  begin,
IndexType  end,
Function &&  function 
) const

Method for parallel iteration over matrix rows from interval [ begin, end) for constant instances.

In each row, given lambda function is performed. Each row is processed by at most one thread unlike the method DenseMatrixView::forElements where more than one thread can be mapped to each row.

Template Parameters
Functionis type of the lambda function.
Parameters
begindefines beginning of the range [ begin,end ) of rows to be processed.
enddefines ending of the range [ begin, end ) of rows to be processed.
functionis an instance of the lambda function to be called for each row.
auto function = [] __cuda_callable__ ( RowView& row ) { ... };

RowView represents matrix row - see TNL::Matrices::DenseMatrixView::RowView.

Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void forRowsExample()
{
using RowView = typename MatrixType::RowView;
const int size = 5;
MatrixType matrix( size, size );
auto view = matrix.getView();
/***
* Set the matrix elements.
*/
auto f = [=] __cuda_callable__ ( RowView& row ) mutable {
const int& rowIdx = row.getRowIndex();
if( rowIdx > 0 )
row.setValue( rowIdx - 1, -1.0 );
row.setValue( rowIdx, rowIdx + 1.0 );
if( rowIdx < size - 1 )
row.setValue( rowIdx + 1, -1.0 );
};
view.forAllRows( f );
std::cout << matrix << std::endl;
/***
* Now divide each matrix row by its largest element - with the use of iterators.
*/
view.forAllRows( [=] __cuda_callable__ ( RowView& row ) mutable {
for( auto element : row )
largest = TNL::max( largest, element.value() );
for( auto element : row )
element.value() /= largest;
} );
std::cout << "Divide each matrix row by its largest element... " << std::endl;
std::cout << matrix << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Getting matrix rows on host: " << std::endl;
forRowsExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Getting matrix rows on CUDA device: " << std::endl;
forRowsExample< TNL::Devices::Cuda >();
#endif
}
Output
Getting matrix rows on host:
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-1 1:2 2:-1 3:0 4:0
Row: 2 -> 0:0 1:-1 2:3 3:-1 4:0
Row: 3 -> 0:0 1:0 2:-1 3:4 4:-1
Row: 4 -> 0:0 1:0 2:0 3:-1 4:5
Divide each matrix row by its largest element...
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-0.5 1:1 2:-0.5 3:0 4:0
Row: 2 -> 0:0 1:-0.333333 2:1 3:-0.333333 4:0
Row: 3 -> 0:0 1:0 2:-0.25 3:1 4:-0.25
Row: 4 -> 0:0 1:0 2:0 3:-0.2 4:1
Getting matrix rows on CUDA device:
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-1 1:2 2:-1 3:0 4:0
Row: 2 -> 0:0 1:-1 2:3 3:-1 4:0
Row: 3 -> 0:0 1:0 2:-1 3:4 4:-1
Row: 4 -> 0:0 1:0 2:0 3:-1 4:5
Divide each matrix row by its largest element...
Row: 0 -> 0:1 1:-1 2:0 3:0 4:0
Row: 1 -> 0:-0.5 1:1 2:-0.5 3:0 4:0
Row: 2 -> 0:0 1:-0.333333 2:1 3:-0.333333 4:0
Row: 3 -> 0:0 1:0 2:-0.25 3:1 4:-0.25
Row: 4 -> 0:0 1:0 2:0 3:-0.2 4:1

◆ getAllocatedElementsCount()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
Index TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::getAllocatedElementsCount

Returns number of all matrix elements.

This method is here mainly for compatibility with sparse matrices since the number of all matrix elements is just number of rows times number of columns.

Returns
number of all matrix elements.
Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void getElementsCountExample()
{
{ 1 },
{ 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9, 10 },
{ 11, 12, 13, 14, 15 }
};
auto triangularMatrixView = triangularMatrix.getConstView();
std::cout << "Matrix elements count is " << triangularMatrixView.getAllocatedElementsCount() << "." << std::endl;
std::cout << "Non-zero matrix elements count is " << triangularMatrixView.getNonzeroElementsCount() << "." << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Computing matrix elements on host: " << std::endl;
getElementsCountExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Computing matrix elements on CUDA device: " << std::endl;
getElementsCountExample< TNL::Devices::Cuda >();
#endif
}
ConstViewType getConstView() const
Returns a non-modifiable view of the dense matrix.
Definition: DenseMatrix.hpp:86
Output
Computing matrix elements on host:
Matrix elements count is 25.
Non-zero matrix elements count is 15.
Computing matrix elements on CUDA device:
Matrix elements count is 25.
Non-zero matrix elements count is 15.

◆ getCompressedRowLengths()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Vector >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::getCompressedRowLengths ( Vector &  rowLengths) const

Computes number of non-zeros in each row.

Parameters
rowLengthsis a vector into which the number of non-zeros in each row will be stored.
Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void getCompressedRowLengthsExample()
{
{ 1 },
{ 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9, 10 },
{ 11, 12, 13, 14, 15 }
};
auto denseMatrixView = denseMatrix.getConstView();
std::cout << denseMatrixView << std::endl;
denseMatrixView.getCompressedRowLengths( rowLengths );
std::cout << "Compressed row lengths are: " << rowLengths << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Getting compressed row lengths on host: " << std::endl;
getCompressedRowLengthsExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Getting compressed row lengths on CUDA device: " << std::endl;
getCompressedRowLengthsExample< TNL::Devices::Cuda >();
#endif
}
Output
Getting compressed row lengths on host:
Row: 0 -> 0:1 1:0 2:0 3:0 4:0
Row: 1 -> 0:2 1:3 2:0 3:0 4:0
Row: 2 -> 0:4 1:5 2:6 3:0 4:0
Row: 3 -> 0:7 1:8 2:9 3:10 4:0
Row: 4 -> 0:11 1:12 2:13 3:14 4:15
Compressed row lengths are: [ 1, 2, 3, 4, 5 ]
Getting compressed row lengths on CUDA device:
Row: 0 -> 0:1 1:0 2:0 3:0 4:0
Row: 1 -> 0:2 1:3 2:0 3:0 4:0
Row: 2 -> 0:4 1:5 2:6 3:0 4:0
Row: 3 -> 0:7 1:8 2:9 3:10 4:0
Row: 4 -> 0:11 1:12 2:13 3:14 4:15
Compressed row lengths are: [ 1, 2, 3, 4, 5 ]

◆ getConstView()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
__cuda_callable__ auto TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::getConstView

Returns a non-modifiable dense matrix view.

Returns
dense matrix view.

◆ getElement()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
__cuda_callable__ Real TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::getElement ( IndexType  row,
IndexType  column 
) const

Returns value of matrix element at position given by its row and column index.

This method can be called from the host system (CPU) no matter where the matrix is allocated. If the matrix is allocated on GPU this method can be called even from device kernels. If the matrix is allocated in GPU device this method is called from CPU, it transfers values of each matrix element separately and so the performance is very low. For higher performance see. DenseMatrix::getRow or DenseMatrix::forElements and DenseMatrix::forAllElements.

Parameters
rowis a row index of the matrix element.
columni a column index of the matrix element.
Returns
value of given matrix element.
Example
#include <iostream>
#include <iomanip>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
template< typename Device >
void getElements()
{
{ 1, 0, 0, 0, 0 },
{ -1, 2, -1, 0, 0 },
{ 0, -1, 2, -1, 0 },
{ 0, 0, -1, 2, -1 },
{ 0, 0, 0, 0, 1 } };
auto matrixView = matrix.getConstView();
for( int i = 0; i < 5; i++ )
{
for( int j = 0; j < 5; j++ )
std::cout << std::setw( 5 ) << std::ios::right << matrixView.getElement( i, i );
}
}
int main( int argc, char* argv[] )
{
std::cout << "Get elements on host:" << std::endl;
getElements< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Get elements on CUDA device:" << std::endl;
getElements< TNL::Devices::Cuda >();
#endif
}
T setw(T... args)
Output
Get elements on host:
1 0 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 0 1
Get elements on CUDA device:
1 0 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 0 1

◆ getNonzeroElementsCount()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
Index TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::getNonzeroElementsCount
overridevirtual

Returns number of non-zero matrix elements.

Returns
number of all non-zero matrix elements.
Example
#include <iostream>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void getElementsCountExample()
{
{ 1 },
{ 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9, 10 },
{ 11, 12, 13, 14, 15 }
};
auto triangularMatrixView = triangularMatrix.getConstView();
std::cout << "Matrix elements count is " << triangularMatrixView.getAllocatedElementsCount() << "." << std::endl;
std::cout << "Non-zero matrix elements count is " << triangularMatrixView.getNonzeroElementsCount() << "." << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Computing matrix elements on host: " << std::endl;
getElementsCountExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Computing matrix elements on CUDA device: " << std::endl;
getElementsCountExample< TNL::Devices::Cuda >();
#endif
}
Output
Computing matrix elements on host:
Matrix elements count is 25.
Non-zero matrix elements count is 15.
Computing matrix elements on CUDA device:
Matrix elements count is 25.
Non-zero matrix elements count is 15.

Reimplemented from TNL::Matrices::MatrixView< Real, Device, Index >.

◆ getOrganization()

template<typename Real = double, typename Device = Devices::Host, typename Index = int, ElementsOrganization Organization = Algorithms::Segments::DefaultElementsOrganization< Device >::getOrganization()>
static constexpr ElementsOrganization TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::getOrganization ( )
inlinestaticconstexpr

Matrix elements organization getter.

Returns
matrix elements organization - RowMajorOrder of ColumnMajorOrder.

◆ getRow() [1/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
__cuda_callable__ auto TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::getRow ( IndexType  rowIdx)

Non-constant getter of simple structure for accessing given matrix row.

Parameters
rowIdxis matrix row index.
Returns
RowView for accessing given matrix row.
Example
#include <iostream>
#include <TNL/Algorithms/parallelFor.h>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void getRowExample()
{
const int size = 5;
/***
* Create dense matrix view which can be captured by the following lambda
* function.
*/
auto matrixView = matrix.getView();
auto f = [=] __cuda_callable__ ( int rowIdx ) mutable {
auto row = matrixView.getRow( rowIdx );
if( rowIdx > 0 )
row.setValue( rowIdx - 1, -1.0 );
row.setValue( rowIdx, rowIdx + 1.0 );
if( rowIdx < size - 1 )
row.setValue( rowIdx + 1, -1.0 );
};
/***
* Set the matrix elements.
*/
TNL::Algorithms::parallelFor< Device >( 0, matrix.getRows(), f );
std::cout << matrix << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Getting matrix rows on host: " << std::endl;
getRowExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Getting matrix rows on CUDA device: " << std::endl;
getRowExample< TNL::Devices::Cuda >();
#endif
}
Output
Getting matrix rows on host:
1
Getting matrix rows on CUDA device:
1

See DenseMatrixRowView.

◆ getRow() [2/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
__cuda_callable__ auto TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::getRow ( IndexType  rowIdx) const

Constant getter of simple structure for accessing given matrix row.

Parameters
rowIdxis matrix row index.
Returns
RowView for accessing given matrix row.
Example
#include <iostream>
#include <functional>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
#include <TNL/Devices/Cuda.h>
template< typename Device >
void getRowExample()
{
{ 1, 0, 0, 0, 0 },
{ 1, 2, 0, 0, 0 },
{ 1, 2, 3, 0, 0 },
{ 1, 2, 3, 4, 0 },
{ 1, 2, 3, 4, 5 }
};
/***
* We need a matrix view to pass the matrix to lambda function even on CUDA device.
*/
const auto matrixView = matrix.getConstView();
/***
* Fetch lambda function returns diagonal element in each row.
*/
auto fetch = [=] __cuda_callable__ ( int rowIdx ) mutable -> double {
auto row = matrixView.getRow( rowIdx );
return row.getValue( rowIdx );
};
int trace = TNL::Algorithms::reduce< Device >( 0, matrix.getRows(), fetch, std::plus<>{}, 0 );
std::cout << "Matrix trace is " << trace << "." << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Getting matrix rows on host: " << std::endl;
getRowExample< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Getting matrix rows on CUDA device: " << std::endl;
getRowExample< TNL::Devices::Cuda >();
#endif
}
Output
Getting matrix rows on host:
Matrix trace is 15.
Getting matrix rows on CUDA device:
Matrix trace is 15.

See DenseMatrixRowView.

◆ getRowCapacities()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Vector >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::getRowCapacities ( Vector &  rowCapacities) const

Compute capacities of all rows.

The row capacities are not stored explicitly and must be computed.

Parameters
rowCapacitiesis a vector where the row capacities will be stored.

◆ getSerializationType()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
std::string TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::getSerializationType
static

Returns string with serialization type.

The string has a form `MatricesDenseMatrix< RealType, [any_device], IndexType, [any_allocator], true/false >`.

Returns
String with the serialization type.

◆ getSerializationTypeVirtual()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
std::string TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::getSerializationTypeVirtual
overridevirtual

Returns string with serialization type.

See DenseMatrixView::getSerializationType.

Returns
String with the serialization type.

Implements TNL::Matrices::MatrixView< Real, Device, Index >.

◆ getView()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
__cuda_callable__ auto TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::getView

Returns a modifiable dense matrix view.

Returns
dense matrix view.

◆ operator!=() [1/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Real_ , typename Device_ , typename Index_ >
bool TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::operator!= ( const DenseMatrixView< Real_, Device_, Index_, Organization > &  matrix) const

Comparison operator with another dense matrix view.

Parameters
matrixis the right-hand side matrix.
Returns
false if the RHS matrix view is equal, true otherwise.

◆ operator!=() [2/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Matrix >
bool TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::operator!= ( const Matrix matrix) const

Comparison operator with another arbitrary matrix type.

Parameters
matrixis the right-hand side matrix.
Returns
true if the RHS matrix is equal, false otherwise.

◆ operator()() [1/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
__cuda_callable__ Real & TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::operator() ( IndexType  row,
IndexType  column 
)

Returns non-constant reference to element at row row and column column.

Since this method returns reference to the element, it cannot be called across different address spaces. It means that it can be called only form CPU if the matrix is allocated on CPU or only from GPU kernels if the matrix is allocated on GPU.

Parameters
rowis a row index of the element.
columnis a columns index of the element.
Returns
reference to given matrix element.

◆ operator()() [2/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
__cuda_callable__ const Real & TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::operator() ( IndexType  row,
IndexType  column 
) const

Returns constant reference to element at row row and column column.

Since this method returns reference to the element, it cannot be called across different address spaces. It means that it can be called only form CPU if the matrix is allocated on CPU or only from GPU kernels if the matrix is allocated on GPU.

Parameters
rowis a row index of the element.
columnis a columns index of the element.
Returns
reference to given matrix element.

◆ operator=()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
DenseMatrixView< Real, Device, Index, Organization > & TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::operator= ( const DenseMatrixView< Real, Device, Index, Organization > &  matrix)

Assignment operator with DenseMatrix.

Parameters
matrixis the right-hand side matrix.
Returns
reference to this matrix.

◆ operator==() [1/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Real_ , typename Device_ , typename Index_ >
bool TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::operator== ( const DenseMatrixView< Real_, Device_, Index_, Organization > &  matrix) const

Comparison operator with another dense matrix view.

Parameters
matrixis the right-hand side matrix view.
Returns
true if the RHS matrix view is equal, false otherwise.

◆ operator==() [2/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Matrix >
bool TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::operator== ( const Matrix matrix) const

Comparison operator with another arbitrary matrix type.

Parameters
matrixis the right-hand side matrix.
Returns
true if the RHS matrix is equal, false otherwise.

◆ print()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::print ( std::ostream str) const
overridevirtual

Method for printing the matrix to output stream.

Parameters
stris the output stream.

Reimplemented from TNL::Matrices::MatrixView< Real, Device, Index >.

◆ reduceAllRows() [1/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Fetch , typename Reduce , typename Keep , typename FetchReal >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::reduceAllRows ( Fetch &  fetch,
const Reduce &  reduce,
Keep &  keep,
const FetchReal &  identity 
)

Method for performing general reduction on ALL matrix rows.

Template Parameters
Fetchis a type of lambda function for data fetch declared as
auto fetch = [=] __cuda_callable__ ( IndexType rowIdx, IndexType columnIdx, RealType elementValue ) -> FetchValue

The return type of this lambda can be any non void.

Template Parameters
Reduceis a type of lambda function for reduction declared as
auto reduce = [=] __cuda_callable__ ( const FetchValue& v1, const FetchValue& v2 ) -> FetchValue { ... };
Template Parameters
Keepis a type of lambda function for storing results of reduction in each row. It is declared as
auto keep = [=] __cuda_callable__ ( IndexType rowIdx, const RealType& value ) { ... };
Template Parameters
FetchValueis type returned by the Fetch lambda function.
Parameters
fetchis an instance of lambda function for data fetch.
reduceis an instance of lambda function for reduction.
keepin an instance of lambda function for storing results.
identityis the identity element for the reduction operation, i.e. element which does not change the result of the reduction.
Example
#include <iostream>
#include <iomanip>
#include <functional>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
template< typename Device >
{
{ 1, 0, 0, 0, 0 },
{ 1, 2, 0, 0, 0 },
{ 0, 1, 8, 0, 0 },
{ 0, 0, 1, 9, 0 },
{ 0, 0, 0, 0, 1 } };
auto matrixView = matrix.getView();
/***
* Find largest element in each row.
*/
TNL::Containers::Vector< double, Device > rowMax( matrix.getRows() );
/***
* Prepare vector view and matrix view for lambdas.
*/
auto rowMaxView = rowMax.getView();
/***
* Fetch lambda just returns absolute value of matrix elements.
*/
auto fetch = [=] __cuda_callable__ ( int rowIdx, int columnIdx, const double& value ) -> double {
return TNL::abs( value );
};
/***
* Reduce lambda return maximum of given values.
*/
auto reduce = [=] __cuda_callable__ ( double& a, const double& b ) -> double {
return TNL::max( a, b );
};
/***
* Keep lambda store the largest value in each row to the vector rowMax.
*/
auto keep = [=] __cuda_callable__ ( int rowIdx, const double& value ) mutable {
rowMaxView[ rowIdx ] = value;
};
/***
* Compute the largest values in each row.
*/
matrixView.reduceAllRows( fetch, reduce, keep, std::numeric_limits< double >::lowest() );
std::cout << "Max. elements in rows are: " << rowMax << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "All rows reduction on host:" << std::endl;
reduceAllRows< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "All rows reduction on CUDA device:" << std::endl;
reduceAllRows< TNL::Devices::Cuda >();
#endif
}
void reduceAllRows(Fetch &fetch, const Reduce &reduce, Keep &keep, const FetchReal &identity)
Method for performing general reduction on ALL matrix rows.
Definition: DenseMatrixView.hpp:447
ViewType getView()
Returns a modifiable view of the dense matrix.
Definition: DenseMatrix.hpp:77
Result reduce(Index begin, Index end, Fetch &&fetch, Reduction &&reduction, const Result &identity)
reduce implements (parallel) reduction for vectors and arrays.
Definition: reduce.h:71
__cuda_callable__ T abs(const T &n)
This function returns absolute value of given number n.
Definition: Math.h:91
Output
All rows reduction on host:
Max. elements in rows are: [ 1, 2, 8, 9, 1 ]
All rows reduction on CUDA device:
Max. elements in rows are: [ 1, 2, 8, 9, 1 ]

◆ reduceAllRows() [2/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Fetch , typename Reduce , typename Keep , typename FetchReal >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::reduceAllRows ( Fetch &  fetch,
const Reduce &  reduce,
Keep &  keep,
const FetchReal &  identity 
) const

Method for performing general reduction on ALL matrix rows for constant instances.

Template Parameters
Fetchis a type of lambda function for data fetch declared as
auto fetch = [=] __cuda_callable__ ( IndexType rowIdx, IndexType columnIdx, RealType elementValue ) -> FetchValue { ... };

The return type of this lambda can be any non void.

Template Parameters
Reduceis a type of lambda function for reduction declared as
auto reduce = [=] __cuda_callable__ ( const FetchValue& v1, const FetchValue& v2 ) -> FetchValue { ... };
Template Parameters
Keepis a type of lambda function for storing results of reduction in each row. It is declared as
auto keep = [=] __cuda_callable__ ( IndexType rowIdx, const RealType& value ) { ... };
Template Parameters
FetchValueis type returned by the Fetch lambda function.
Parameters
fetchis an instance of lambda function for data fetch.
reduceis an instance of lambda function for reduction.
keepin an instance of lambda function for storing results.
identityis the identity element for the reduction operation, i.e. element which does not change the result of the reduction.
Example
#include <iostream>
#include <iomanip>
#include <functional>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
template< typename Device >
{
{ 1, 0, 0, 0, 0 },
{ 1, 2, 0, 0, 0 },
{ 0, 1, 8, 0, 0 },
{ 0, 0, 1, 9, 0 },
{ 0, 0, 0, 0, 1 } };
auto matrixView = matrix.getView();
/***
* Find largest element in each row.
*/
TNL::Containers::Vector< double, Device > rowMax( matrix.getRows() );
/***
* Prepare vector view and matrix view for lambdas.
*/
auto rowMaxView = rowMax.getView();
/***
* Fetch lambda just returns absolute value of matrix elements.
*/
auto fetch = [=] __cuda_callable__ ( int rowIdx, int columnIdx, const double& value ) -> double {
return TNL::abs( value );
};
/***
* Reduce lambda return maximum of given values.
*/
auto reduce = [=] __cuda_callable__ ( double& a, const double& b ) -> double {
return TNL::max( a, b );
};
/***
* Keep lambda store the largest value in each row to the vector rowMax.
*/
auto keep = [=] __cuda_callable__ ( int rowIdx, const double& value ) mutable {
rowMaxView[ rowIdx ] = value;
};
/***
* Compute the largest values in each row.
*/
matrixView.reduceAllRows( fetch, reduce, keep, std::numeric_limits< double >::lowest() );
std::cout << "Max. elements in rows are: " << rowMax << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "All rows reduction on host:" << std::endl;
reduceAllRows< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "All rows reduction on CUDA device:" << std::endl;
reduceAllRows< TNL::Devices::Cuda >();
#endif
}
Output
All rows reduction on host:
Max. elements in rows are: [ 1, 2, 8, 9, 1 ]
All rows reduction on CUDA device:
Max. elements in rows are: [ 1, 2, 8, 9, 1 ]

◆ reduceRows() [1/2]

template<typename Real = double, typename Device = Devices::Host, typename Index = int, ElementsOrganization Organization = Algorithms::Segments::DefaultElementsOrganization< Device >::getOrganization()>
template<typename Fetch , typename Reduce , typename Keep , typename FetchReal >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::reduceRows ( IndexType  begin,
IndexType  end,
Fetch &  fetch,
const Reduce &  reduce,
Keep &  keep,
const FetchReal &  identity 
)

Method for performing general reduction on matrix rows.

Template Parameters
Fetchis a type of lambda function for data fetch declared as
auto fetch = [=] __cuda_callable__ ( IndexType rowIdx, IndexType columnIdx, RealType elementValue ) -> FetchValue { ... };

The return type of this lambda can be any non void.

Template Parameters
Reduceis a type of lambda function for reduction declared as
auto reduce = [=] __cuda_callable__ ( const FetchValue& v1, const FetchValue& v2 ) -> FetchValue { ... };
Template Parameters
Keepis a type of lambda function for storing results of reduction in each row. It is declared as
auto keep = [=] __cuda_callable__ ( IndexType rowIdx, const RealType& value ) { ... };
Template Parameters
FetchValueis type returned by the Fetch lambda function.
Parameters
begindefines beginning of the range [begin,end) of rows to be processed.
enddefines ending of the range [begin,end) of rows to be processed.
fetchis an instance of lambda function for data fetch.
reduceis an instance of lambda function for reduction.
keepin an instance of lambda function for storing results.
identityis the identity element for the reduction operation, i.e. element which does not change the result of the reduction.
Example
#include <iostream>
#include <iomanip>
#include <functional>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
template< typename Device >
void reduceRows()
{
{ 1, 0, 0, 0, 0 },
{ 1, 2, 0, 0, 0 },
{ 0, 1, 8, 0, 0 },
{ 0, 0, 1, 9, 0 },
{ 0, 0, 0, 0, 1 } };
/***
* Find largest element in each row.
*/
TNL::Containers::Vector< double, Device > rowMax( matrix.getRows() );
/***
* Prepare vector view for lambdas.
*/
auto rowMaxView = rowMax.getView();
/***
* Fetch lambda just returns absolute value of matrix elements.
*/
auto fetch = [=] __cuda_callable__ ( int rowIdx, int columnIdx, const double& value ) -> double {
return TNL::abs( value );
};
/***
* Reduce lambda return maximum of given values.
*/
auto reduce = [=] __cuda_callable__ ( double& a, const double& b ) -> double {
return TNL::max( a, b );
};
/***
* Keep lambda store the largest value in each row to the vector rowMax.
*/
auto keep = [=] __cuda_callable__ ( int rowIdx, const double& value ) mutable {
rowMaxView[ rowIdx ] = value;
};
/***
* Compute the largest values in each row.
*/
matrix.reduceRows( 0, matrix.getRows(), fetch, reduce, keep, std::numeric_limits< double >::lowest() );
std::cout << "Max. elements in rows are: " << rowMax << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Rows reduction on host:" << std::endl;
reduceRows< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Rows reduction on CUDA device:" << std::endl;
reduceRows< TNL::Devices::Cuda >();
#endif
}
void reduceRows(IndexType begin, IndexType end, Fetch &fetch, const Reduce &reduce, Keep &keep, const FetchReal &identity)
Method for performing general reduction on matrix rows.
Output
Rows reduction on host:
Max. elements in rows are: [ 1, 2, 8, 9, 1 ]
Rows reduction on CUDA device:
Max. elements in rows are: [ 1, 2, 8, 9, 1 ]

◆ reduceRows() [2/2]

template<typename Real = double, typename Device = Devices::Host, typename Index = int, ElementsOrganization Organization = Algorithms::Segments::DefaultElementsOrganization< Device >::getOrganization()>
template<typename Fetch , typename Reduce , typename Keep , typename FetchReal >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::reduceRows ( IndexType  begin,
IndexType  end,
Fetch &  fetch,
const Reduce &  reduce,
Keep &  keep,
const FetchReal &  identity 
) const

Method for performing general reduction on matrix rows for constant instances.

Template Parameters
Fetchis a type of lambda function for data fetch declared as
auto fetch = [=] __cuda_callable__ ( IndexType rowIdx, IndexType columnIdx, RealType elementValue ) -> FetchValue { ... };

The return type of this lambda can be any non void.

Template Parameters
Reduceis a type of lambda function for reduction declared as
auto reduce = [=] __cuda_callable__ ( const FetchValue& v1, const FetchValue& v2 ) -> FetchValue { ... };
Template Parameters
Keepis a type of lambda function for storing results of reduction in each row. It is declared as
auto keep = [=] __cuda_callable__ ( IndexType rowIdx, const RealType& value ) { ... };
Template Parameters
FetchValueis type returned by the Fetch lambda function.
Parameters
begindefines beginning of the range [begin,end) of rows to be processed.
enddefines ending of the range [begin,end) of rows to be processed.
fetchis an instance of lambda function for data fetch.
reduceis an instance of lambda function for reduction.
keepin an instance of lambda function for storing results.
identityis the identity element for the reduction operation, i.e. element which does not change the result of the reduction.
Example
#include <iostream>
#include <iomanip>
#include <functional>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
template< typename Device >
void reduceRows()
{
{ 1, 0, 0, 0, 0 },
{ 1, 2, 0, 0, 0 },
{ 0, 1, 8, 0, 0 },
{ 0, 0, 1, 9, 0 },
{ 0, 0, 0, 0, 1 } };
/***
* Find largest element in each row.
*/
TNL::Containers::Vector< double, Device > rowMax( matrix.getRows() );
/***
* Prepare vector view for lambdas.
*/
auto rowMaxView = rowMax.getView();
/***
* Fetch lambda just returns absolute value of matrix elements.
*/
auto fetch = [=] __cuda_callable__ ( int rowIdx, int columnIdx, const double& value ) -> double {
return TNL::abs( value );
};
/***
* Reduce lambda return maximum of given values.
*/
auto reduce = [=] __cuda_callable__ ( double& a, const double& b ) -> double {
return TNL::max( a, b );
};
/***
* Keep lambda store the largest value in each row to the vector rowMax.
*/
auto keep = [=] __cuda_callable__ ( int rowIdx, const double& value ) mutable {
rowMaxView[ rowIdx ] = value;
};
/***
* Compute the largest values in each row.
*/
matrix.reduceRows( 0, matrix.getRows(), fetch, reduce, keep, std::numeric_limits< double >::lowest() );
std::cout << "Max. elements in rows are: " << rowMax << std::endl;
}
int main( int argc, char* argv[] )
{
std::cout << "Rows reduction on host:" << std::endl;
reduceRows< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Rows reduction on CUDA device:" << std::endl;
reduceRows< TNL::Devices::Cuda >();
#endif
}
Output
Rows reduction on host:
Max. elements in rows are: [ 1, 2, 8, 9, 1 ]
Rows reduction on CUDA device:
Max. elements in rows are: [ 1, 2, 8, 9, 1 ]

◆ save() [1/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::save ( const String fileName) const

Method for saving the matrix view to the file with given filename.

The ouput file can be loaded by DenseMatrix.

Parameters
fileNameis name of the file.

◆ save() [2/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::save ( File file) const
overridevirtual

Method for saving the matrix view to a file.

The ouput file can be loaded by DenseMatrix.

Parameters
fileis the file where the matrix will be saved.

Reimplemented from TNL::Matrices::MatrixView< Real, Device, Index >.

◆ sequentialForAllRows() [1/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Function >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::sequentialForAllRows ( Function &&  function)

This method calls sequentialForRows for all matrix rows.

See DenseMatrixView::sequentialForAllRows.

Template Parameters
Functionis a type of lambda function that will operate on matrix elements.
Parameters
functionis an instance of the lambda function to be called in each row.

◆ sequentialForAllRows() [2/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Function >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::sequentialForAllRows ( Function &&  function) const

This method calls sequentialForRows for all matrix rows (for constant instances).

See DenseMatrixView::sequentialForRows.

Template Parameters
Functionis a type of lambda function that will operate on matrix elements.
Parameters
functionis an instance of the lambda function to be called in each row.

◆ sequentialForRows() [1/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Function >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::sequentialForRows ( IndexType  begin,
IndexType  end,
Function &&  function 
)

Method for sequential iteration over all matrix rows for non-constant instances.

Template Parameters
Functionis type of lambda function that will operate on matrix elements. It is should have form like
auto function = [] __cuda_callable__ ( RowView& row ) { ... };

RowView represents matrix row - see TNL::Matrices::DenseMatrixView::RowView.

Parameters
begindefines beginning of the range [begin,end) of rows to be processed.
enddefines ending of the range [begin,end) of rows to be processed.
functionis an instance of the lambda function to be called in each row.

◆ sequentialForRows() [2/2]

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename Function >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::sequentialForRows ( IndexType  begin,
IndexType  end,
Function &&  function 
) const

Method for sequential iteration over all matrix rows for constant instances.

Template Parameters
Functionis type of lambda function that will operate on matrix elements. It is should have form like
auto function = [] __cuda_callable__ ( RowView& row ) { ... };

RowView represents matrix row - see TNL::Matrices::DenseMatrixView::RowView.

Parameters
begindefines beginning of the range [begin,end) of rows to be processed.
enddefines ending of the range [begin,end) of rows to be processed.
functionis an instance of the lambda function to be called in each row.

◆ setElement()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
__cuda_callable__ void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::setElement ( IndexType  row,
IndexType  column,
const RealType value 
)

Sets element at given row and column to given value.

This method can be called from the host system (CPU) no matter where the matrix is allocated. If the matrix is allocated on GPU this method can be called even from device kernels. If the matrix is allocated in GPU device this method is called from CPU, it transfers values of each matrix element separately and so the performance is very low. For higher performance see. DenseMatrix::getRow or DenseMatrix::forElements and DenseMatrix::forAllElements.

Parameters
rowis row index of the element.
columnis columns index of the element.
valueis the value the element will be set to.
Example
#include <iostream>
#include <TNL/Algorithms/parallelFor.h>
#include <TNL/Containers/StaticArray.h>
#include <TNL/Matrices/DenseMatrix.h>
#include <TNL/Devices/Host.h>
template< typename Device >
void
setElements()
{
auto matrixView = matrix.getView();
for( int i = 0; i < 5; i++ )
matrixView.setElement( i, i, i );
std::cout << "Matrix set from the host:" << std::endl;
std::cout << matrix << std::endl;
auto f = [ = ] __cuda_callable__( const TNL::Containers::StaticArray< 2, int >& i ) mutable
{
matrixView.addElement( i[ 0 ], i[ 1 ], 5.0 );
};
TNL::Algorithms::parallelFor< Device >( begin, end, f );
std::cout << "Matrix set from its native device:" << std::endl;
std::cout << matrix << std::endl;
}
int
main( int argc, char* argv[] )
{
std::cout << "Set elements on host:" << std::endl;
setElements< TNL::Devices::Host >();
#ifdef __CUDACC__
std::cout << "Set elements on CUDA device:" << std::endl;
setElements< TNL::Devices::Cuda >();
#endif
}
Array with constant size.
Definition: StaticArray.h:24
Output
Set elements on host:
Matrix set from the host:
Row: 0 -> 0:0 1:0 2:0 3:0 4:0
Row: 1 -> 0:0 1:1 2:0 3:0 4:0
Row: 2 -> 0:0 1:0 2:2 3:0 4:0
Row: 3 -> 0:0 1:0 2:0 3:3 4:0
Row: 4 -> 0:0 1:0 2:0 3:0 4:4
Matrix set from its native device:
Row: 0 -> 0:5 1:5 2:5 3:5 4:5
Row: 1 -> 0:5 1:6 2:5 3:5 4:5
Row: 2 -> 0:5 1:5 2:7 3:5 4:5
Row: 3 -> 0:5 1:5 2:5 3:8 4:5
Row: 4 -> 0:5 1:5 2:5 3:5 4:9
Set elements on CUDA device:
Matrix set from the host:
Row: 0 -> 0:0 1:0 2:0 3:0 4:0
Row: 1 -> 0:0 1:1 2:0 3:0 4:0
Row: 2 -> 0:0 1:0 2:2 3:0 4:0
Row: 3 -> 0:0 1:0 2:0 3:3 4:0
Row: 4 -> 0:0 1:0 2:0 3:0 4:4
Matrix set from its native device:
Row: 0 -> 0:5 1:5 2:5 3:5 4:5
Row: 1 -> 0:5 1:6 2:5 3:5 4:5
Row: 2 -> 0:5 1:5 2:7 3:5 4:5
Row: 3 -> 0:5 1:5 2:5 3:8 4:5
Row: 4 -> 0:5 1:5 2:5 3:5 4:9

◆ setValue()

template<typename Real = double, typename Device = Devices::Host, typename Index = int, ElementsOrganization Organization = Algorithms::Segments::DefaultElementsOrganization< Device >::getOrganization()>
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::setValue ( const RealType v)

Sets all matrix elements to value v.

Parameters
vis value all matrix elements will be set to.

◆ vectorProduct()

template<typename Real , typename Device , typename Index , ElementsOrganization Organization>
template<typename InVector , typename OutVector >
void TNL::Matrices::DenseMatrixView< Real, Device, Index, Organization >::vectorProduct ( const InVector &  inVector,
OutVector &  outVector,
const RealType matrixMultiplicator = 1.0,
const RealType outVectorMultiplicator = 0.0,
IndexType  begin = 0,
IndexType  end = 0 
) const

Computes product of matrix and vector.

More precisely, it computes:

outVector = matrixMultiplicator * ( *this ) * inVector + outVectorMultiplicator * outVector
Template Parameters
InVectoris type of input vector. It can be TNL::Containers::Vector, TNL::Containers::VectorView, TNL::Containers::Array, TNL::Containers::ArrayView, or similar container.
OutVectoris type of output vector. It can be TNL::Containers::Vector, TNL::Containers::VectorView, TNL::Containers::Array, TNL::Containers::ArrayView, or similar container.
Parameters
inVectoris input vector.
outVectoris output vector.
matrixMultiplicatoris a factor by which the matrix is multiplied. It is one by default.
outVectorMultiplicatoris a factor by which the outVector is multiplied before added to the result of matrix-vector product. It is zero by default.
beginis the beginning of the rows range for which the vector product is computed. It is zero by default.
endis the end of the rows range for which the vector product is computed. It is number if the matrix rows by default.

Note that the ouput vector dimension must be the same as the number of matrix rows no matter how we set begin and end parameters. These parameters just say that some matrix rows and the output vector elements are omitted.


The documentation for this class was generated from the following files: