TNL - Template Numerical Library

Tomas Oberhuber, Vitézslav Zabka, Vladimir Klement

tomas.oberhuber@f jfi.cvut.cz

NVIDIA.

CUDA"

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague

Overview

We present new numerical library designed to profit from C++ templates. It
supports computations on GPU via Nvidia CUDA. In near future, we plan to
release version 0.1 which targets to solution of non-linear partial
differential equations. To solve the non-linear problems efficiently, fast
assembling of the linear systems in each time step is necessary. Therefore
our library provides uniform interface for several formats for
sparse matrices which is accessible even from the CUDA kernels. It
significantly simplifies development of the non-linear solvers.

To set the nonzero elements of the matrix, we first transfer the matrix
object instance to the GPU (we transfer only metadata not the matrix
elements - they are already on the GPU):

Matrix* devicelmage =
dim3 blockSize(256),
int sharedMemory =
assemblyMatrix <<< gridSize ,

blockSize ,

sharedMemory >>>(devicelmage ,..
matrix);

passToDevice(matrix);
gridSize (4);

Aims of TNL project)5

We want our library to be F.R.E.E. - Flexible, Reliable, Efficient and Easy
to use.

freeFromDevice (
The kernel assemblyMatrix may look like:

1. Flexible -researchers in numerical analysis and computer simulations template< typename Matrix >

often must try many different approaches and methods before they find __global__ assemblyMatrix(Matrix* matrix,)
the successtul one. A library, which meets these requirements, must be {
flexible and it must allow to do large changes with small effort. C++ intx columns|[];
templates are appropriate tool for this task. doublex values [];

2. Reliable - numerical simulations must be, of course, correct. To eliminate int rowldx = blockldx.x*blockDim.x+threadldx.x;
as many bugs in our code as possible, we write number of tests and we ift(rowldx < matrix —>getRows ())

compare our implementation with other libraries. {
int elements =

computeRow (rowldx , columns , values);
matrix —>setRowFast (rowldx , columns ,
values , elements);

3. Efficient - computer simulations can be very time consuming. To speed
things up, TNL supports computations on GPUs. C++ templates help to
generate highly optimized code.

4. Easy to use - even though TNL combines technologies like C++ templates

and GPU computations, it should be available even to people without }
deep knowledge of C++ and GPU. |
Vectors Solvers
Vectors are represented by a template class: The following solvers of the linear systems are supported:
tnlVector< Real = double, Device = tnlHost, Index = int > * SOR,
where * CG
* Real is precision of the floating point arithmetics e BiCGStab
e Device is device where the vector is allocated (tnlHost or tnlCuda) e GMRES [4]
» Index is type for indexing the vector elements « TFQMR
Example: Preconditioners are not implemented yet.
/% %% % The following explicit solvers for PDEs are supported:

x Allocate and setup vectors
*/
tnlVector < double,

e Euler (first order)

* Runge-Kutta-Merson (fourth order) with time step adaptivity [3,4]
tnlHost > xHost;

tnlVector < double. tnlCuda > xDevice, yDevice; Time-dependent PDE solver
xHost.setSize (1000); TNL contains tnlSolver class which prepares the necessary framework for
xHost.setValue(1.0) ; the user. The main function is very simple:
xDevice = xHost; int main(int argc, charx argv[])
yDevice.setLike (xDevice); {
yDevice.setValue(2.0); tnlSolver < simpleProblem > solver;
if(! solver. run(CONFIG_FILE, argc, argv))
[k return EXIT_FAILURE;
* Compute y = 0.6 =y + 2.0 * x return EXIT_SUCCESS;

%/ }

yDevice.addVector (xDevice, 2.0, 0.6); The simpleProblem is a template implementing the problem being solved:

template< typename Mesh >
bool simpleProblemSolver < Mesh >::
init(const tnlParameterContainer& config)

[* %% %

x Compute scalar product of yDevice and xDevice

%/
double s = yDevice.scalarProduct(xDevice); {
/% %% %
/% %% % x Set—up your solver here:

Read input parameters and model

«+ Compute L2 norm of yDevice x .
coefficients like these

x/ *
double 12_norm = yDevice.lpNorm(2.0); */
const tnlString& problemName =

Vo wne config.getParameter <tnlString >("problem");

x Save yDevice to file
*/

yDevice . save (

/% % % %

x 2. Set—up the mesh.

*/

const tnlString& meshFile =
config.getParameter<tnlString >("mesh");

“y.tl'll”);

Matrices
Matrices are represented as:

tnlFformatMatrix<Real = double, Device = tnlHost, Index = int> it(! this—>mesh.load(meshFile))
The following formats are supported on both CPU and GPU: return false;

e Dense

e Tridiagonal [x xxx

e Multidiagonal i/ o SCU=P L0

* Ellpack
* Sliced Ellpack [1] (published as Row-grouped CSR format)

 Chunked Ellpack [2] (published as Improved Row-grouped CSR format)
* CSR j

To initialize the sparse matrix formats like (Sliced/Chunked) Ellpack or CSR,
one must compute the number of the nonzero elements in each row. We
refer it as row length:

typedef tnlCSRMatrix < double, tnlCuda, int > Matrix;
Matrix matrix; {
matrix.setDimensions(1000, 1000);

typename Matrix :: RowLengthsVector rowlLengths;
rowLengths.setSize (1000);
computeRowlLengths (rowLengths
matrix .setRowLengths (

const IndexType& dofs = this—>mesh. getDofs ();
this —>dofVector.setSize (dofs);
return true,

template< typename Mesh >
bool simpleProblemSolver <Mesh>:: setlnitialCondition (
const tnlParameterContainer& conftig)

if(! this—>dofVector.load("initial-cond"))
return false;
return true;

); }
rowLengths);

/X\/X\L\ &P}\‘) o /

Mathematical Modelling Group vj

template< typename Mesh >
bool simpleProblemSolver <Mesh >:: makeSnapshot (

const RealType& time, const IndexType& step)
{

cout << "Writing output at time "

<< time << " step " << step;
tnlString fileName(...);
if(! this—>dofsVector.save(fileName))
return false;
return true,

}

template< typename Mesh >

typename simpleProblemSolver <Mesh >:: DofVectorType&
simpleProblemSolver <Mesh >:: getDofVector ()

{

return dofVector;

}

template< typename Mesh >
void simpleProblemSolver < Mesh >::
gcetExplicitRHS (const RealType& time,
const RealType& tau,
DofVectorType& u,
DofVectorType& fu)

/% % % %

right—hand side of

x Compute the

*

* d/dt u(x) = fu(x, u).

*/

it (DeviceType:: getDevice () == tnlHostDevice)
{

i

it (DeviceType:: getDevice () == tnlCudaDevice)

}

template< typename Mesh >
void simpleProblemSolver < Mesh >::
assemblyMatrix(RealType& time,
const RealType& tau,
DofVectorType& u,
MatrixType& matrix)

if(
1

DeviceType :: getDevice () == tnlHostDevice)

}

DeviceType :: getDevice () tnlCudaDevice)

{

j
j

Future plans

TNL experimentaly supports:

* high-precision arithmetics

e structured and unstructured numerical meshes

We aim to implement efficient solvers for the Navier-Stokes equations. We
plan the following milestones:

e unstructured meshes and finite element methods (version 0.2)

e multigrid methods (version 0.3)

e computations on multi-GPU systems and clusters of GPUs (version ?2?)

References

[1] Oberhuber, T.; Suzuki, A. and Vacata,). New Row-grouped CSR format for
storing the sparse matrices on GPU with implementation in CUDA Acta
Technica, 2011, 56, pp. 447-466.

2] Heller M., Oberhuber T., Improved Row-grouped CSR Format for Storing
of Sparse Matrices on GPU, Proceedings of Algoritmy 2012, 2012,
Handlovi¢ova A., Minarechova Z. and Sev¢ovi¢ D. (ed.), pp. 282-290.

3] Oberhuber, T.; Suzuki, A. and Zabka, V., The CUDA implementation of the
method of lines for the curvature dependent flows, Kybernetika, 2011, 47, pp.
251-272.

[4] Oberhuber T., Suzuki A., Vacata)., Zabka V., Image segmentation using
CUDA implementations of the Runge-Kutta-Merson and GMRES methods,
Journal of Math-for-Industry, 2011, vol. 3, pp. 73-79 .

TNL will be available soon at

https://code.google.com/p/tnl

